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Abstract  

A two-channel maximum-entropy method (MEM), first 
used to enhance magnetization densities from phased 
polarized neutron data by Papoular & Gillon [(1990). 
Europhys. Lett. 13, 429-434], has been applied to the 
electron deformation density. The resulting entropic 
densities are compared with standard deformation 
densities and with dynamic and static deformation 
maps obtained from multipole ref'mements. The proce- 
dure is illustrated with simulated and real single-crystal 
X-ray data sets on the molecular crystal of ot-glycine. 
Both a uniform prior and a prior equal to the MEM- 
enhanced dynamic model deformation density are used 
in the MEM procedure, the result of which does not 
depend on the starting density. The method is judged by 
the appearance of the resulting maps and the values of 
the molecular dipole moment before and after the MEM. 
Compared with the conventional deformation density, 
the MEM procedure sharpens the peaks in the bond but 
flattens the weaker features, especially when a uniform 
prior is used. The dipole-moment criterion shows the 
non-uniform prior to be preferable to the uniform prior in 
reproducing electrostatic properties. The usefulness of 
the MEM in charge-density analysis remains open to 
discussion. 

1. Introduct ion  

The mapping of the electron distribution in molecules 
and crystals from diffraction data has been a topic of 
interest for the last 30 years. One of the main aims of 
such studies is the evaluation of electrostatic properties, 
based on thedirect use of the measured structure factors 
F(H), as originally proposed by Bertaut (1978), or in 
direct space from parameters obtained with aspherical 
atom models (Su & Coppens, 1992). 

The maximum-entropy method has been proposed as 
the method of choice for enhancement of the electron 
density beyond the experimental resolution (Sakata & 
Sato, 1990; Sakata, Uno, Takata & Howard, 1993) and 
would thus appear the method of choice to optimize the 
information that can be extracted from an experimental 
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data set and to produce the least possible biased density. 
Diffraction techniques make wide use of Fourier 
syntheses to obtain model-free information about various 
scattering densities from sparse and noisy sets of 
structure factors, provided that the latter are suitably 
phased. As is well known, Fourier syntheses are subject 
to truncation errors and other effects owing to incom- 
pleteness of the data set. It is precisely in this context of 
image processing that maximum entropy (MaxEnt) was 
first successfully applied in astronomy by Frieden (1972) 
and Gull & Daniell (1978). The phases are assumed to be 
reliably known from a reasonable model or from the 
experiment itself. 

The relevance of MaxEnt to crystallography was 
stressed by Collins (1982), Livesey & Skilling (1985) 
and others. Its application has spread with the advent of 
nonlinear efficient algorithms (Bricogne, 1984; Skilling 
& Bryan, 1984; Skilling & Gull, 1985) and dedicated 
crystallographic programs such as MEED (Sakata & 
Sato, 1990; Kumazawa, Kubota, Takata, Sakata & 
Ishibashi, 1993). However, it has been recently pointed 
out by Jauch & Palmer (1993) and Jauch (1994) that 
MaxEnt is of little use when the densities to be 
reconstructed have a large dynamic range and the aim 
is to recover fine and detailed information. This is very 
much the case when bonding effects are to be studied, in 
which case the deviations from sphericity of the electron 
distribution about the nuclei are relatively small for all 
but the H atoms. 

Use of a difference method reduces the dynamic range 
of the reconstruction substantially, such that minor 
features become relatively more pronounced. The 
deformation density Ap(r) = p(r) -- Pref(r) is an appro- 
priate function for such a method. The retrieval of both 
the positive p+(r) and the negative p-(r) parts of the 
deformation density, Ap(r) = p ( r ) -  Prer(r) = p+(r)-- 
p-(r), requires the use of a two-channel entropy 
formalism. The latter has been shown to be quite useful 
in the context of magnetization densities (Papoular & 
Gillon, 1990a,b) and of unpolarized neutron diffraction 
involving atoms with scattering lengths of opposite signs 
(Sakata et al., 1993). The use of a muttichannel approach 
in the analysis of crystal structures in which the spatial 
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distribution is different for different atoms has been 
discussed by Bricogne (1988). 

As a test case, we have selected a low-temperature 
experimental single-crystal X-ray data set on the 
small-unit-cell crystal of a-glycine by Legros & Kvick 
(1980). The crystal is monoclinic, centrosymmetric, 
space group P21/n, and the X-ray data span the range 
sin 0/2 = 0.00-1.20,~-1, with 1205 reflections for 
which F > 2or(F). 

2. The single-channel MaxEnt method and its short- 
comings in the reconstruction of details of the 

electron-density distribution 

The Cambridge MaxEnt algorithm (Skilling & Bryan, 
1984; Gull & Skilling, 1991) is used in the analysis. Its 
application to a phased set of diffraction data essentially 
follows the approach of Collins (1982). Crystallographic 
symmetry is forced into the density reconstructions using 
the averaged Fourier coefficients introduced by Papoular 
(1991). No use is made of fast Fourier transform 
methods. For the single-channel method, the value of 
F(0) was not included in the data set. 

The retrieval of the positive charge density p(r) in a 
crystal from a limited and noisy set of N unique structure 
factors F°bS(Hk) and their related e.s.d, bars crffIk) is a 
problem for which MaxEnt is well suited. The first step is 
to digitize the unit cell (or a suitable subunit) of volume 
V into M pixels of size ,4 = V/M,  at the centers rj of 
which the density values pj = p(rj) are sought. The 
second step is to maximize the discrete entropy 
functional 

M 

S[p(r)] -- - ~p(rj)ln[p(rj)/m(rj)], (1) 
j=l 

where p(r/), the probability of the density associated with 
pixel j, and the corresponding probability m(ry) for the 
prior (model) density p0(r) are defined as 

p(rj) = pj = p(rj) p(rj), 

m(rj) = mj = Po(rj) po(rs). (2) 

The entropy functional S[p(r)] is maximized subject to 
the constraint C[p(r)] = ;(2 = N, the number of unique 
structure factors, where 

N 

C[p(r)] = X 2 = ~ I[F°bS(Hk) - F~¢ffIk)]12/~ffIk) 
k = l  

and 

M 

Fcale(I'It) = (V~tceu/M) ~ p(ry)exp{2zriH k • rj} 
: j = l  

with suitable scaling to F °bs . 

(3a) 

(3b) 

Note that (3b) remains valid when only a subunit of 
the unit cell is digitized into M pixels, provided that this 
subunit remains a multiple of the asymmetric unit. 

Maximizing S[p] with respect to the Pi's under 
constraint requires the use of a Lagrange multiplier 2. 
As first described by Skilling & Bryan (1984), the 
Lagrangian functional L = S - 2X 2 is introduced, where 
S = S[p(r)]. At convergence, 

Vp(L) = V;(S) - 2Vp(x 2) = O. (4a) 

In the case of a uniform prior, po(r) = P0j = P0 for all j 
and condition (4a) is conveniently recast into 

Pi = A e x p { - 2 (  ~'~ pj)aC[p]/Opj}, (4b) 

where 

a = exp{ F, pjlnpj}.  (4c) 

The quantity A is thus a weighted logarithmic average of 
the converged entropic density p(r) over the unit cell. 

The algorithm is non-linear, iterative and solves for 
both 2(n + 1) and pj(n + 1) starting from 2(n) and pj(n) 
at iteration n. The starting (n -- 0) values are 2 _~ 0 and 
pj(0) as defined by the prior density. Achieving 
convergence involves a two-step process, in which first 
the X 2 = N constraint is satisfied and subsequently the 
entropy S is maximized. 

Both C and S are expanded quadratically and the 
search for pi(n) replaced by a search for increments 
8pj(n). An additional distance penalty function is 
introduced to make sure that the increments 3pj(n) do 
not become too large. From (4b), suitably modified to 
allow for the penalty function just mentioned, Pi(n + 1) 
is expressed as a function of pj(n) and 2(n + 1). The 
latter 2(n + 1) value, unknown at this point, is found by 
satisfying the constraint C[p(n + 1)] = N. Pi(n + 1) is 
then derived. 

When used with limited data sets of ten or twenty 
unique structure factors, the non-linear iterative MaxEnt 
algorithm is rather insensitive to the tunable parameter A. 
By contrast, the use of large data sets requires a careful 
tuning of this parameter. In practice, A is assigned a 
given starting value and the MaxEnt algorithm is run 
iteratively until convergence is obtained and the 
constraint X2= N is met. It can be shown that the 
extrapolated entropic value of F(0) increases monotoni- 
cally with A. It is seen from (4b) that the expected density 
far away from any atom is of the order A, since OC[p]/Opj 
is then expected to be negligible. Hence, A should be 
kept as small as possible. On the other hand, A increases 
with the dynamic range of the density as implied by (4c). 
As enlarging the data set by  incorporating more 
measured Bragg peaks to achieve higher spatial resolu- 
tion will increase the amount of structure in the 
reconstruction, it will also increase A, in which intense 
features are more heavily weighted. Consequently, there 
is a loss of sensitivity to weak density features. IfA is too 
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small, the algorithm never reaches convergence or 
produces a spuriously distorted density. If too large, it 
never converges. Reconstructed density values smaller 
than A are unreliable. A practical example of tuning A 
can be found in Papoular, Prandl & Schiebel (1992). 

indistinogu.ishable entropic solutions within A = 
1.82 e A -3, our sensitivity level. 

Since the sensitivity level is much larger than the 
effects to be found in the deformation electron density, 
which are typically less than 1 elk -3, an alternative 
procedure is called for. 

2.1. Application to a simulated data set 

An upgraded version of the program MOLLY (Hansen 
& Coppens, 1978), LSMOL90, was used in a multipolar 
refinement of the experimental data on the ot-glycine data 
set of Legros & Kvick (1980). The positional and thermal 
parameters of the C, N, O and H atoms, the x parameters 
and the multipole populations were varied in the least- 
squares refinement. The thermally averaged promolecule 
density was used to yield a set of 1205 simulated 
structure factors Fsph(I-I), to which the experimental 
standard deviations were assigned. 

The asymmetric unit of the crystal was defined as the 
region with 0 < x <  1; 0 < y <  1/4, 0 < z < l  
[a = 5.084 (1), b = 11.820(2), c----- 5.458 (1)]k, 
/3 = 111.95 (2)°], and divided into 32 x 16 x 32 pixels. 
An everywhere-positive three-dimensional density 
reconstruction was carried out, using a uniform prior 
density. An optimal value of the default density 
A = 1.82e,~ -3 was found as follows. First, a very 
small value of A, 0.01 e,~ -3, was selected. After each 
iteration, n, of the MaxEnt algorithm, yielding current 
values of the density pl n~, this value was upgraded to 
A ~") = exp ~-~4 p~,0 In p) '0~ until X 2 - "  N = 1205, which 
was reached after 160 iterations. Because F(0) is not 
used as a data point, this process diverges and the density 
increases indefinitely. The algorithm was subsequently 
run with the constant default value A = 
A (160) = 1.82cA -3 until convergence, requiring a few 
more iterations. The value of the reconstructed density 
far from the atoms is already small, and A could probably 
be reduced down to about 1.5 e ~-3, but this would not 
affect our discussion. The resulting O(1)--C(1)--O(2),  
NmC(2) - -C(1)  and N--H(1) . . .O(1)  sections are 
shown in Fig. 1. The main features, the spherical density 
representing the C, O and N atoms, are reconstructed as 
such, but the density at the H-atom site is significantly 
flattened. The highest value of the density in the section, 
38 e,~-3, is found at the O-atom sites. The lowest level 
drawn (2 e,~, -3) is clearly not physically significant. 

Since the MaxEnt algorithm is intrinsically non-linear, 
and hence iterative, we examined the influence of using 
two very distinct starting densities on the final converged 
charge density. The first starting density is obtained from 
the 1205 Fsph Fourier coefficients. Those pixels 
corresponding to negative or zero values of the Fourier 
density are assigned an identical very small positive 
value instead. The second starting density is the flat 
uniform density, with a value chosen equal to A, the 
default density. Both choices result in two virtually 

3. The two-channel method for retrieval of the 
deformation electron density 

3.1. The two-channel entropy S[Ap(r)] 

As the wide dynamic range involved in the total 
electron density p(r) interferes with the retrieval of the 
relatively weak features of chemical interest, for better 
sensitivity the analysis may be performed on the 
deformation zip(r), which has a much smaller dynamic 
range. The deformation density and the deformation 
structure factors are defined by 

zip(r) = kpt°tal(r) - psph(r) (5a) 

AF(I - I )  - -  kFt°tal(I-I) - FSph(r) ,  ( 5b )  

where k is a scale factor relating the experimental and 
absolute scales. The optimal value of k is further 
discussed below. 

The local difference density zip(r) can be either 
positive or negative. Its average over the unit cell must be 
zero, since bonding effects only redistribute the electron 
density. Since the spherical part of the density is much 
larger than the deformation density, the phases of F(H) 
are close, though not identical, to those of Fsph(H). For a 
centrosymmetric crystal, sign changes generally only 
occur for some extremely weak reflections. 

The entropy functional S[p(r)] defined by (1) requires 
a positive density everywhere in the unit cell. The 
associated probability p(r) is proportional to the 
probability of finding an electron at r. In the two- 
channel method, zip(r) is defined as the difference 
between two positive functions, p+(r) and p-(r), 
representing the densities of excess and lack of electrons, 
respectively. At a given rj in the unit cell, either one or 
the other is significant since excess- and lack-of-electron 
densities are mutually exclusive. The related p+(rj) and 
p-(rj), defined as 

p+(r)  = p + ( r ) / ~ { p + ( r )  + p-(r)} 

and (6) 

p - ( r )  = p - ( r ) / y ] { p + ( r )  + a-(r)},  

are the associated probabilities of finding either excess- 
or lack-of-electron density at rj. In analogy to the 
procedure used in the single-channel entropy method, the 
prior models m+(r) and m-(r) are introduced. 

In analogy to (1), the two-channel entropy is defined 
as 
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M 
S[Ap] = - ~-]{p+ ln(p+ /m+) + pT ln(p~/mT)}, (7) 

j=l  

which quantifies the amount of structure present in a 
given deformation density Ap(r). 

We have followed two different approaches. In the 
first, the models m+(rj) and m-(rj) were taken to be 
uniform and equal across the unit cell; in the second 
approach, a non-uniform model based on the best prior 
guess for a chemically meaningful deformation density 

was used. The entropy-maximized dynamic deformation 
density from the least-squares multipole model was used 
as the model in the latter case. As an alternative, the 
theoretical deformation density could be taken. 

The N diference structure factors are derived with 
AF°bs(I ' I i )  - -  kF°bs(I-Ii) -FSph(Hi) v a l u e s  (i ~ 1 , N )  a n d  

the experimental standard deviations or(Hi) are assigned 
to the difference structure factors. To maintain neutrality, 
AF(0) is added to the data set with a value equal to zero 
and a standard deviation five times less than the smallest 

CI-O1-02 plane: Standard FOURIER CI-01-02 plane: MAXIMUM ENTROPY 

N-CI-C2 plane: Standard FOURIER N-CI-C2 plane: MAXIMUM ENTROPY" 

N-HI-Of plane: Standard FOURIER N-HI-OI plane: MAXIMUM ENTROPY 

Fig. I. Electron-density sections from the single-channel MEM procedure compared with the standard Fourier summation. Note the flattening of the 
density at the H positions in the N--H...O section. 
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standard deviation in the data set. This procedure 
eliminates the necessity for a second Lagrangian multi- 
plier in the maximization process. Two sets of density 
values, p+(rj) and p-(rj) ( j  = 1, M), are to be found, 
which maximize the two-channel entropy, and for which 

M 
AF~ alc = (V/M) ~-~[p+ - p)-] exp{2Jrt][-Ii-r j} (8) 

j=l 

fits the A F  °bs within the error bars. 

3.2. Uniform vs informative prior model densities 

3.2.1. Use of uniform models. Straightforward algebra 
leads to expressions analogous to (4) for the converged 
entropic densities: 

p+ =aexp{-2[y~ '~  (p+ + pT)]OC[p]/Op+ }, j =  1,M 

and 

p}- = A e x p { - k [ E  (p+ + pT)]aC[p]/OpT}, 
with 

(9a )  

j = I , M  

A = exp (p+ In p+ + p~- In p]- . (9b) 

Since OC[p]/Op + = -OC[p]/Opf, this gives 

p+pf = a  2. (9c) 

It follows from (9a)-(9c) that, in a given pixel {rj}, 
either p+ or pf  can have a value larger than A, which 
remains our sensitivity level. The two-channel entropy is 
now a function of the scale factor k, defined in (5), and 
will not attain its maximum value unless the spherical 
part is satisfactorily subtracted out. Consistency requires 
that S(k) be skewed about the optimal value kop t. 

3.2.2. Use of informative non-uniform models. When 
a non-uniform model p0(rj) is used as the starting point 
in the single-channel case, (4b) and (4c) are replaced by 

Pj/Poj = B e x p { - k (  E Pj)OC[P]/OPj} (lOa) 

and 

B = exp{ Y'j~pjln(pj/Poj)}. (10b) 

In the particular case of a uniform prior, POj = 

P0 =constant, B reduces to B- -A/p0 ,  where 
A = y~pjlogpj is the logarithmic averaged density 
introduced in §2. Corresponding modifications are 
made in (9a)-(9c) for the two-channel method. In 
particular, (9c) is now replaced by 

p+pf 2 + -  (9at) = B PojPoj, 

where 

B = exp { + + + ~[p j  ln(pj/Poj)+p}-ln(pT/pffj)] }. (9e) 

Note that B is very close to unity when the prior density 
is very close to the true density. By contrast, it can be 
substantially different when the prior is vague (i.e. 

uninformative). This is the case for instance when a flat 
prior is used along with the single-channel method. 

The converged entropic density remains insensitive to 
the initial starting density, but it now depends on the 
prior density Poj. In the extreme case of no experimental 
data at all, the converged entropic density is the prior 
density itself. When the experimental data are intro- 
duced, the entropic density is the density closest to the 
prior that fits the data and shows the least amount of 
spurious correlation. 

3.3. The case of ot-glycine at 120 K 

3.3.1. The scale factor k. Calculation of the deforma- 
tion functions defined in (5a), (5b) requires knowledge of 
the scale factor k relating the experimental scale to the 
absolute value of 1 used in the calculation. Since the 
multipolar model reflects the changes in the electron 
density due to bonding, the scale factor obtained in the 
aspherical least-squares refinement is expected to be 
relatively free from bias due to model inadequacies. We 
have first rescaled the experimental data with the least- 
squares scale factor and then tested its validity by 
searching for deviations from k -- 1 corresponding to the 
maximum statistical entropy. The results shown in Fig. 2 
indicate agreement to within 1% between the MEM and 
least-squares scale factors. 

3.3.2. Simulated data set. The calculated 
AFmultip°le(I-Ik) values for 1205 reflections with 
AF > 2cr(AF), with associated standard deviations, 
were used as a model data set. AF(000)= 0 was 
added as explained in §3.1 to yield a data set consisting 
of 1206 reflections. O(1)--C(1)--O(2) sections of both 
the static and dynamic model densities are shown in Fig. 
3. It may be noted that the contour interval in the maps 
(4-0.05 elk -3) is approximately 40 times less than the 
sensitivity level used in the total electron-density 
reconstruction. 

The dynamic deformation density Apmul(r) = 
Pmul(l ')  - -  Psph(r) was reconstructed using (i) the experi- 
mental e.s.d, bars and (ii) very small e.s.d, bars about 30 

i I i 

F i i # w  i i . . . . . .  i i ~ 
i i #  ! ! ! i ~ ' .  

R 9 J -  . . . . .  ~ . . . . . . .  ~.~ . . . . .  + . . . . . . .  ~ . . . . . . . .  ~ . . . . . . .  ~ . . . . . . . . .  ~ - . - .~ . . .  
• : 

. . . . .  ~ . . . - ~ _ ~  . . . . .  ~ . . . . . . .  ~. . . . . . . .  ~ . . . . . . . . . .  ~ . . . . . . . .  , ........... 

i i i i ! i i , ' ,  , , 
8.r~ .... ~ .... i ..... ~ ....... ~- ...... ~ .... - ....... 4 ........ 

I 
~ r - . . , .  - ~  . . . .  4 . . . . . .  " . . . . . . . .  " . . . . . . . .  - -  . . . . .  4 . . . . . . .  i . . . . . . .  

-0.=96 0.98 1.02 1.04 
> k(abs) 

Fig. 2. Entropy as a function of the scale factor k. 



402 TWO-CHANNEL MAXIMUM-ENTROPY METHOD 

times less than the experimental ones. The same default 
value A = 0.001 e A -3 was used in both instances. The 
O(1) - -C(1) - -O(2)  MEM sections obtained from the 
simulated Fm°a(H) - Fsph(I'I) values are shown in Fig. 4. 
Though the main features are not seriously affected by 
the variation in the e.s.d, bars, the amount of detail is 
much larger with the second choice, as expected. 

Let us define the total reconstructed density at ry as 
/9+ + PT, which is a strictly positive quantity [cf. (6) in 
{}3.1]. We find the amount of total reconstructed density 
numerically integrated over the unit cell to be 2.5 times 

larger when the smaller error bars are used than when 
experimental e.s.d, bars are used in the reconstruction. 
The result in the former case is much closer to the Fourier 
transform of Fmu{(l-I) - Fsph(I-I). The use of experimen- 
tal e.s.d, bars results in a considerable loss of detail in 
the reconstruction. We will show below that the lost 
information is partially recoverable with the use of an 
informative non-uniform prior. 

3.3.3. MEM with observed data. The near-optimal 
value of 1.01 for the scale factor (Fig. 2) is used in the 
entropic reconstruction with a uniform prior, yielding the 

/~" 

(a) 

- 3  0 3 

- 3  0 3 
(b) 

- 3  0 3 

\ I ~ ~ .z - 

" :~ - 0  

""3 / ~" 

/ ¢~ ~ \ x l  I xx" 

- -~ ~~,'f' /' , Fig. 3. Model deformation densities in the plane of  O(1)--C(1)--O(2) . ,  
- -  3 , , / ¢ ~ 7 - - ~ . / , /  t .- , , - -  3 "  (a) Static density. (b) Dynamic density, (sin 0/2)m~ x = 1.2tk- with 

,~ k = 1.01 (--~ koptimal, see Fig. 2). (c) Dynamic density as in (b) but 
- - 3  0 ,2 with (sin0/2)max = 2.0.~- ' .  Contour interval 0 .05e/k -3, negative 

(c) contours broken, zero contour omitted. 
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deformation density Ap = 1.01Pobs -- Psph" The MEM 
densities in the three sections of the molecule previously 
reported by Legros & Kvick (1980) are compared in 
Figs. 5, 6 and 7 with the corresponding standard 
deformation densities obtained directly from the data. It 
is clear that the use of a uniform prior density sharpens 
and enhances the bond peaks relative to the observed 
deformation density but reduces the lone-pair peaks, 

- 3  0 
L ~ i 

_3fl 
- 3  0 

(a) 

3 

"_cY2 

/ 

- 3  
c 
t _  

which are less pronounced in the standard deformation 
density. Though the main features stand out more clearly 
in this enhanced deformation density and are sharpened, 
there is a flattening of the remaining less-prominent 
features such as the maximum at the back of the N atom 
in the N - - C - - C  section, in particular when a non- 
uniform prior is used. This apparent loss of meaningful 
detail is confirmed by the dipole-moment analysis 
described in the following section. 

Examination of Figs. 5(b), 6(b) and 7(b) shows that the 
density obtained with a non-uniform prior is preferable. 
Compared with the density in the corresponding experi- 
mental sections (Figs. 5c, 6c and 7c), the non-uniform 
prior MEM leads to a sharpening of the features in the 
maps and some increase in detail. An example of the 
latter is the double maximum in the C- -C  bond, the 
significance of which remains to be established. A 
similar conclusion is reached when the comparison is 
made with the very high resolution model density of Fig. 
3(c). The MEM distributions are not restricted by the 
shape of the model functions, which allow only smooth 
features to appear in the model maps. 

The distribution of the 1206 normalized residuals after 
the non-uniform prior MEM procedure is shown in 
Fig. 8. 

4. T h e  m o l e c u l a r  d i p o l e  m o m e n t  as  a t e s t  o f  t h e  
M E M  p r o c e d u r e  

The electrostatic moments, the electrostatic potential, 
field and the electric field gradient can be extracted from 
good-quality single-crystal X-ray data (Su & Coppens, 
1992). Here, we will use the molecular dipole moment to 

- -  3 0 3 examine the physical implications of the MEM optimiza- 
3 , , . ,  \ \ / l / r ~  13 tion. An optimization that would produce unrealistic 

values of the electrostatic properties would obviously not 
be an acceptable procedure. 

I / " ~  ~I-7~,~2__ ? The solution value of the dipole moment of the 
' ~-~-L/_.!' c~-glycine molecule is 38.7 x 10-3°Cm (Khanarian 

',"-""'-' ""---'- & Moore, 1980), while our multipole refinement of 
, the Legros & Kvick data gives values of 

'-" '  46.0 (14) x 10-3° C m when the H nuclei are positioned 
0 at the locations from the neutron data (see below) and 

f l i ,  " 39"0 (13) X 10-30 C m when the H-at°m p°siti°ns fr°m 
' the multipole refinement are used. The former value is to 

be preferred and suggests a slight increase in dipole 
. .  moment in the solid state relative to the solution, in 

'! :~ii" ~,.-..__~),I,_ agreement with conclusions based on examination of 
other difffraction-based molecular dipole and quadrupole 
moments (Spackman, 1992). 

" The calculation of a dipole moment in direct space 
' - -  3 from the electron-density distribution requires partition- 

- 3 0 3 ing of space. A discrete boundary can be based on the 
(b) partitioning of space into polyhedral volumes, in analogy 

Fig. 4. MEM sections in the O(1)--C(1)--O(2) plane obtained with 
FmUl(I-l) - FSph(I-I) structure amplitudes and a uniform prior. (a) to  S e i t z  ce l l s  u s e d  in  s o l i d - s t a t e  s c i e n c e  (Coppens, M o s s  
Experimental standard deviations. (b) Standard deviations reduced by & Hansen, 1980). The method is appropriate for analysis 
a factor (1206) b~. Contours as in Fig. 3. of the MEM densities in that it does not require model 
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functions, unlike dipole moments derived from the 
aspherical-atom least-squares refinement. 

The boundaries in the discrete boundary space 
partitioning method are defined by the van der Waals 
radii of the contacting atoms, a pixel being assigned to 
the molecule of atom A if r a / r  B < RA/RS,  r x and R x 
being the distance to atom X and the van der Waals 
radius of atom X, respectively. 

The coordinates of the H atoms at the experi- 
mental temperature of 120K were obtained by 

interpolation between neutron coordinates from 300 
and 20K measurements (Almlrf, Kvick & Thomas, 
1973; Power, Turner & Moore, 1976; Jrnsson & 
Kvick, 1972), assuming contraction of the inter- 
molecular but not intramolecular distances. 

Dipole moments for two sets of somewhat 
different van der Waals radii are listed in Table 
1 for both the MEM and the experimental densities. 
The discrete boundary results from the MEM and 
experimental densities are directly comparable as 
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Fig. 5. MEM sections in the O ( 1 ) - - C ( 1 ) - - O ( 2 )  plane based on 

F°bS(H) - FPh(I/)  structure amplitudes. (a) With uniform prior. (b) 
With non-uniform prior. (c) Standard deformation density calculated 
with F°bS(lt) -- FPh(tl)  amplitudes. Contours as in Fig. 3. 
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they are based on the same partitioning of space. 
The uniform prior dipole moment is disappointingly 
low, while the non-uniform prior result is closer to 
the experimental value. Nevertheless, remaining 
discrepancies indicate that physical properties may 
not be properly preserved in the maximum-entropy 
procedure. 

5. Concluding remarks 

Our main focus in this paper has been to explore the 
optimal way to apply the maximum-entropy method 
in charge-density studies. We show that a single- 
channel method is inadequate for the study of 

detailed bonding features in the electron density. 
The two-channel method is more successful but does 
not reproduce the features adequately if a uniform 
prior density is used. If the information available 
from the aspherical-atom least-squares refinement is 
used as a prior density, the MaxEnt method produces 
reasonable densities, judging from their appearance 
and the value of the molecular dipole moment. The 
question whether the MaxEnt method contributes to 
an increase in information available from the 
experimental data requires further study. Based on 
the current results, we cannot make an unequivocal 
statement in support of the maximum-entropy method 
in charge-density analysis. It is clear, however, that 
any further analysis will require a multi- rather than 
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(c) Fig. 6. As Fig. 5 for the N--C(2)--C(1) section. Contours as in Fig. 3. 
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Table 1. Molecular dipole moments (×10  -30 Cm) from 
(a) discrete boundary space partitioning and (b) multi- 

pole refinement 
Experimental MEM density 

density uniform prior 
(a) (a) 

Set I Set II Set I Set II 

/zo 2.84 2.20 1.83 1.57 
/ ~  -- 1.00 -- 1.03 0.47 0.40 
/z¢ -29 .15  --26.92 -3 .40  --3.67 
I/zl 30.35 27.79 4.44 4.54 

van der Waals radii used (,a.) 
O N 

Set I: 1.4 1.5 
Set II: 1.52 1.55 

MEM density 
non-uniform prior 

(a) 
Set I Set II 

10.77 9.84 
-1 .87  -1 .90  

-20 .08  -18 .8  
26.15 24.32 

C H 
1.7 1.2 
1.65 1.2 

Multipole 
model 

(b) 

16.81 
-0 .80  

-31 .72  
46.03 (143) 

a single-channel approach to the reconstruction of the 
density features. 

Finally, it should be mentioned that adoption of the 
strategy developed in this paper to other problems, such 
as isotopic substitution (e.g. H/D) in neutron diffraction, 
is straightforward. 
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unpublished H-atom parameters, based on a 20 K neutron 
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76CH-00016. 
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R E S I D U A L S  f o r  A L P H A - G L Y C I N E  
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